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When fluid is withdrawn from a body of stratified fluid the surfaces of constant 
density are deformed towards the region of withdrawal. The equations describing the 
flow caused by withdrawal through a point sink in a two-layer unbounded system in 
which viscous forces dominate are formulated using the boundary-integral 
representation of Stokes flow. It is shown by dimensional and analytic arguments 
that surface tension between the layers is a necessary condition for the stability of 
an interfacial equilibrium in which only one fluid is withdrawn. The critical flow rate 
above which both fluids are withdrawn is determined numerically as a function of the 
capillary number. When the flow is supercritical a small adaptation of the numerical 
scheme allows the proportion of fluid withdrawn from each layer to be found. The 
various analyses and conclusions further our understanding of the physical prowsses 
that determine the compositional output of volcanic eruptions that tap an underlying 
stratified reservoir of magma. 

1. Introduction 
It is very common for the density of naturally occurring bodies of fluid to vary 

with height. A ‘selective withdrawal ’ problem poses the following questions : 
(i) If a sink is introduced into such a stratified environment, will fluid be 

selectively withdrawn from a horizontal fluid layer containing the sink, or will the 
flow deform the density surfaces so that a mixture of fluids of different densities is 
extracted 1 

(ii) If a mixture of fluids is extracted what proportion of the mixture is withdrawn 
from each level ? 

A range of such problems, with discontinuous and continuous density dis- 
tributions, in two-dimensional and axisymmetric geometries, has been studied in the 
inertial parameter regime. A review of this work may be found in Imberger (1980). 
The particular cases of two-dimensional flow that is either inviscid and irrotational 
or in an isotropic porous medium have been investigated by conformal-mapping 
techniques (Craya 1949; Bear & Dagan 1964; Tuck & Vandon-Broeck 1984). The 
problems described so far are appropriate to  fields such as the effects on water purity 
of outflow from reservoirs and aquifers. In  this paper we discuss the much less 
considered regime of viscous withdrawal from a layered system, which has 
applications, in particular, to the field of igneous geology. 

Compositional zonation in deposits from volcanic eruptions has been used to infer 
the existence of stratification in the contents of the magma chamber feeding the 
eruption (see review in Hildreth 1981). Recent models of the thermal and chemical 
evolution of magma chambers have shown that fractional crystallization and double- 
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diffusive effects can cause this stratification (Sparks, Huppert & Turner 1984 ; 
Huppert & Sparks 1984). The consequent interest in the structure of the stratification 
has prompted investigations into the selectivity of the withdrawal of magma from 
the chamber during the course of a volcanic eruption (Spera 1984; Blake & Ivey 
1986) and the effect on the mineral composition of the eruption products (Koyaguchi 
1985; Freundt & Tait 1986; Spera et al. 1986). The numerical simulations of Spera 
(1984), however, did not include the effects of density stratifioation. Experimental 
work, described in Blake & Ivey (1986), did not investigate the effects of surface 
tension. We present both analytic and numerical results which show that both 
buoyancy and surface tension play an important role in an accurate description of 
viscous selective withdrawal. 

Motivated by the geological application, we consider axisymmetric withdrawal 
from a point sink located, for simplicity, within the upper of two semi-infinite layers 
of viscous fluid with different densities and equal viscosities. The extension to the 
case of unequal viscosities is described briefly in Appendix B. We note that the flow 
in a magma chamber is often a t  low Reynolds number due to the extremely large 
viscosity of many melts. Inertial forces are assumed, therefore, to be negligible 
everywhere, so that the fluids are in Stokes flow. If the dimensions of the sink are 
small in comparison with the distance between the interface and the sink then the 
breakdown of this assumption in the immediate neighbourhood of the sink will not 
affect the analysis. In  $2 we derive an  integral equation describing the interfacial 
motion, and we use dimensional analysis to  show that the system is characterized by 
the dimensionless flow rate and the ratio of surface tension to buoyancy forces. In  $ 3 
we present arguments showing that surface tension is necessary for the stability of 
an equilibrium position of the interface and in Appendix A we derive an analytic 
solution for such an equilibrium in the limit of small interfacial deformation. 

The boundary-integral representation of Stokes flow has been found a suitable 
basis for numerical solution of creeping-flow problems (e.g. Youngren & Acrivos 
1975; Rallison & Acrivos 1978; Lee & Leal 1982; Geller, Lee & Leal 1986). In  $4 we 
describe a computational scheme for the integration of the boundary-integral 
equation of motion given in $2. Numerical simulations confirm the theoretical 
predictions derived in $3 and in Appendix A. Results for the critical flow rate beyond 
which withdrawal of both layers must occur are given in $5. For conditions in which 
both layers are withdrawn, the proportion extracted from each layer is calculated 
numerically as a function of flow rate in $6. Our conclusions are presented in $7 .  

2. Formulation of the problem 
Consider a semi-infinite layer of fluid of density p+ overlying another such layer of 

density p- (> p+). (See figure 1 for a definition sketch.) Let the fluids be immiscible 
and, for simplicity, of equal viscosity p. I n  cylindrical polar coordinates ( r ,  8, z) ,  let 
the interface between the two fluids be disturbed from its initial position at z = 0 
to z = f ( r ,  t )  by the introduction of a sink of strength q on the axis of symmetry at 
z = h. This deformation is resisted by the effects of gravity and interfacial tension. 

We assume that inertial forces are negligible. Thus the equations of fluid motion 
reduce to 

v - u  = 0, pv2u = VP, ,  - (2.1 a, 6 )  

where the modified pressures Pk are given by 

p* = P+P,gz, (2.2) 
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FIQURE 1. Definition sketch. A sink of strength q is introduced a t  a distance h above an 
interface between two fluids initially a t  z = 0. The interface deforms to z = f ( r ,  t ) .  

p is the dynamic pressure, g is the acceleration due to gravity and the appropriate 
value for p is taken in z > f and z < f. The flow is the linear superposition of sink 
flow 

us=--- P; = 0, 
41c R3 ' (2.3) 

where R is the displacement from the sink, and the flow ud driven by the buoyancy 
and interfacial forces arising from the deformation of the interface. We express the 
velocity ud using the general identities for Stokes flow given by Ladyzhenskaya 
(1963) : 

Ui(X) X E  v 
( 2 . 4 ~ )  

X E  v*, 
( 2 . 4 ~ )  

where u is a Stokes flow with stress tensor B in domain V with boundary aV, outward 
normal n and complementary space V* and where r = X - y .  We apply (2.4b) to the 
Stokes flow ud in each of the domains z > f and z < f for a point x lying on the 
interface, and add the results. The contributions from the hemispheres a t  infinity are 
zero since ud is a locally driven flow. The two integrals involving u(y)  cancel as a 
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result of the continuity of velocity across the interface and the difference in sign of 
the outward normal to the two fluid volumes. Thus 

where F, is the jump in uijnj across the interface. Here 

since we are using the modified pressure gradients in (2.1). The jump in this modified 
stress tensor is composed of the jump in the true stress tensor, -p6ij+2,ueu, due to 
the interfacial tension and the jump in the modified pressure due to the density 
discontinuity. Hence 

(2.7) F = ( (p- -p+)  gf - y 4  n = Fn, 

say, where y is the coefficient of interfacial tension, and the normal n and curvature 
K of the surface are given by 

and 

where f ’  and f ”  denote d f/dr and d2fldr2 respectively. 
The azimuthal integral in (2.5) may be evaluated using the axisymmetry of the 

problem. We find that ud has no swirl and its remaining components are given by 

(2.10) 

where Xrr, Xrz, X,, and X,, are complicated functions of r and r’ involving 
complete elliptic integrals. The detailed forms are given in Appendix C. 

We make the problem dimensionless by scaling all lengths with respect t o  h and 
all velocities with respect to g‘h2p+/p, where g‘ = g(p- -p+)/p+. This scaling gives rise 
to a dimensionless sink strength 

and a capillary number 

(2.11) 

(2.12) 

These are the only parameters in the dimensionless system. From now on all 
quantities will be dimensionless unless explicitly stated otherwise. We combine (2.3) 
and (2.10) to deduce that the total velocity a t  a point ( r , z )  lying on the interface 
x = f ( r )  is given by 
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where F = f(r’) - r+) and K is given by (2.9). This equation forms the basis of the 
numerical scheme described in $4. 

For small values of Q we would expect the interface to assume a stable 
configuration in which the restoring forces of buoyancy and surface tension balance 
the advective effects of a weak sink, thus keeping the interface near z = 0. As Q 
increases it will reach a critical value QJr) beyond which there is no stable interfacial 
position. When Q > QJr) we expect the interface to be drawn into the sink and both 
fluids to be withdrawn. 

Before commencing numerical integration of (2.13) to determine Q,, it is instructive 
to consider some special cases analytically. These cases, discussed in the following 
section, shed light on the nature of the interfacial instability for Q > Q, and provide 
a useful check of the integration scheme. Discussion of numerical solutions to (2.13) 
resumes in $4. 

3. Interfacial modes and timescales of motion 
Consider the situation in which Q = 0. If the interface is disturbed away from its 

equilibrium position at z = 0, then the restoring actions of buoyancy and surface 
tension will cause it to return towards its original position. We find the timescale of 
the return to equilibrium by considering the eigenmodes of the motion in the case 
of a small-amplitude perturbation. For simplicity, we initially consider only axi- 
symmetric eigenmodes. 

Let the interfacial position be z = [ ( r ,  t )  with [ Q 1 and a{/& Q 1. The fluid motion 
is given by (2.1) subject to the conditions of continuity and stress a t  the interface. 
For a small-amplitude perturbation, we may apply these conditions at z = 0 rather 
than a t  z = 6, the errors being negligible. We solve (2.1 a )  by introducing the stream 
function 4 with 

(3.1) 

The curl of (2 . lb)  produces 

(3.2a) 

The continuity of velocity and of tangential stress a t  the interface imply that 

(3.26, c )  

(3.2d) 

where [ 1: denotes the jump across z = 0. The remaining boundary conditions are the 
normal-stress balance across the interface, 

where P is determined from (2.1 b ) ,  and the kinematic boundary condition 

- ac =-+--. 4 a4 
at r ar 

(3.2e) 
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It is easy to verify that the eigenmodes of the system of equations (3.2) are given 

( 3 . 3 4  

(3.3b) 

(3.3c) 
k 

and 

where J, and J, are Bessel functions of the first kind and of orders 0 and 1. The decay 

5 = - J,(kr) e-"t, 
U 

rate u is given by 

(3.4) 

(Though we considered, only the axisymmetric eigenmodes for simplicity, it is poss- 
ible to show that the non-axisymmetric eigenmodes satisfy 5 cc J,(kr) cos (me) e-Rt 
and have decay rates that  ate given by (3.4) independently of the value of m.)  

An appreciation of the dependence of the decay rate u upon the lengthscale k-' of 
the disturbance in this simple situation is of crucial importance to our understanding 
of the more general problem described in $2. We see from the form of (3.4) that  the 
decay of a disturbance is due to the effect of surface tension on short lengthscales 
( k +  00) and to buoyancy forces on long lengthscales (k+O). The least-stable 
disturbance lengthscale (k = r-i) has decay rate u = art. It is clear from physical 
grounds that a decrease in the surface tension will lead to a decrease in the stability 
of the system. We now see that in the limit of no surface tension (r = 0) disturbances 
on very short lengthscales will have a negligible decay rate. 

Equation (3 .4)  describes the effect of the stabilizing forces on the system. The next 
stage of our investigation is to include the destabilizing effects of a background 
advective flow field. We consider first a simple uniform straining motion, 

u = ( - E r ,  0, ZEZ) ( E  > 0) ,  13.5) 

for which 5 = 0 is still an equilibrium position. However, when 6 is perturbed away 
from zero the situation is somewhat different. Since the Stokes equations are linear, 
the effect of a background strain (3 .5)  on the interfacial modes (3.3) is kinematic 
rather than dynamic ; all horizontal lengths are shortened at a rate E and all vertical 
lengths are extended a t  a rate 2E. The eigenmodes (3.3) become self-similar 
solutions, 

(3.6,) + = A(t)-Jl[k(t)r][l+k(t)z] 0-V) e-"(t)Z ( z  > 0), 
k(t) 

(3.6b) 

where = -UA 
d k  dA 
-= Ek,  - 
dt dt 

(3.7a, b)  

(3.7c) 

We see that the straining motion has two effects on an interfacial perturbation. First, 
the lengthscale k-' decreases with time (3.6,) and, secondly, the amplitude A decays 
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more slowly than (3.4) suggests by an amount 2E.  Therefore, if E > ari there is a 
range of wavenumbers k, < k < k, centred around k = r-i in which a perturbation 
will grow rather than decay. Further, if r = 0 then the system is unstable to 
disturbances on all lengthscales k-l less than 8E. (We note that if E < 0 then the 
straining motion will be stabilizing rather than destabilizing.) 

It is, of course, possible to  extend the analysis further. Equations (3.7) may be 
integrated to find the growth in the amplitude A in the unstable range of 
wavenumbers (k, < k < k2). Alternatively we may wish to consider an interfacial 
equilibrium of the general problem with a sink above the interface and to analyse the 
evolution of a wave packet of ripples as it is advected toward the origin. Provided 
the width of the packet is less than the lengthscale of the flow induced by the sink 
then (3.7) will still hold, now with E a function of time equal to the local strain rate 
a t  the location of the packet. However, such analyses are restricted to infinitesimal 
perturbations and a t  this point we move on to discuss the growth of disturbances a t  
finite amplitude, together with the stability of solutions to (2.13). 

Consider the situation with a sink (Q > 0 )  above the interface and suppose that 
there is an equilibrium interfacial position z =f( r )  =+ 0. The time-development of a 
general perturbation to this position can only be evaluated numerically. However, 
the physical processes - buoyancy, surface tension and strain - underlying the time- 
development have the same effects as in the idealized case of uniform strain on a 
nearly plane interface. We use the insight gained from that earlier example to  
construct scaling arguments that describe the behaviour in the present case. 

Suppose the interface is disturbed towards the sink with a perturbation of 
magnitude H and horizontal lengthscale L with H d O ( L ) .  The restoring forces of 
buoyancy and surface tension are O ( H L 2 )  and O(I'KL2) respectively, where the 
curvature K is O ( H / L 2 ) .  Under these forces the perturbation tends to subside at  a 
velocity O(Ud), which is determined by a balance of the restoring forces and the 
viscous resistance O(UdL).  Thus Ua is O ( H ( L +  I ' I L ) ) .  On the other hand, the portion 
of the interface displaced towards the sink finds itself in a region of greater sink 
velocity and tends to move upward. The change U s  in the sink velocity due to a small 
displacement is proportional to  the product of the magnitude of the displacement 
and the local vertical gradient of us (defined by (2.3)). Hence U s  is O(HQ).  Therefore, 
whether the perturbation grows or decays depends on the competition between the 
O(Q) growth due to the strain generated by the sink and the O ( L + T / L )  decay due 
to restoring forces. I n  the previous analytic example this competition is reflected in 
( 3 . 7 ~ ) .  (If a source (Q < 0 )  rather than a sink is present then the strain due to the 
source would be in such a direction as to augment the effects of the restoring forces 
and to stabilize the interfacial position further.) 

These arguments hold for all perturbations whose magnitude does not greatly 
exceed their lengthscale. If Q is greater than O ( L + T / L )  then a small perturbation 
will grow to large amplitude. When H % L we must replace the estimate of the 
viscous resistance to restoring forces by O(UdH)  and of K by O ( l / L ) .  We conclude 
that in this limit Ud increases much more slowly than H. Conversely, the gradients 
of the sink flow increase rapidly as the sink is approached, leading to  the conclusion 
that U s  increases rather more rapidly than H. Therefore, we expect that, if Q is 
sufficiently large for an infinitesimal perturbation to  grow, at finite amplitudes the 
perturbation will continue to  grow at an even greater rate. 

To summarize, the stabilizing influences of surface tension and gravity have a 
minimum at a lengthscale that is a decreasing function of r. When r = 0 the 
stabilizing effects are due to gravity alone and are negligible a t  small lengthscales. 
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Therefore, as T-tO the destabilization due to the gradients of sink flow must 
eventually dominate on a range of short lengthscales ; disturbances on these 
lengthscales grow increasingly rapidly to large amplitude. The unperturbed 
interfacial equilibrium thus becomes unstable a t  a critical value of r. Put the other 
way round, there is a critical value Qc(r) such that no stable equilibrium position of 
the interface exists for Q > Qc(r). Furthermore &,(O) = 0. 

We note, finally, that  the bifurcation to instability is likely to be subcritical; 
sufficiently large disturbances from equilibrium towards the sink will lead to 
simultaneous withdrawal, even if Q < Q,. 

4. The numerical scheme 
In the previous section we presented arguments that predict a critical value, Qc(r), 

of the flow rate which, if exceeded, produces simultaneous withdrawal of both fluid 
layers. We now describe a numerical method of solution for (2.13) which allows us to 
determine the interfacial motion for general values of Q and r and, in particular, 
leads to evaluation of the critical withdrawal rate. The method is similar to previous 
schemes for the solution of the Stokes equations by means of the boundary-integral 
representation (2.4) (Youngren & Acrivos 1975 ; Rallison & Acrivos 1978 ; Lee & Leal 
1982; Geller et al. 1986). 

Equation (2.13) gives the velocity of points lying in the interface, and hence the 
rate of change of interfacial position, as an integral function of the current position. 
The interfacial shape, z = f ( r ) ,  is represented by 153 points; 20 points are spaced 
linearly in 0 < r < 0.1 and 133 points are spaced in geometric progression with ratio 
1.05 in 0.1 < r < 65.79 ... (i.e. about 14 points in each interval ro < r < 2r,,). This 
distribution of points is chosen to give an efficient representation of the short 
lengthscales involved in instability near the sink on the axis and the large 
lengthscales involved in the overall interfacial shape away from the axis. The spacing 
of the points varies smoothly in the transition from linear to geometric progression 
at r = 0.1 ; no anomalous behaviour was detected in this region, nor did the use of a 
grid with different spacing or another transition point affect the results. 

The calculation of the integrals at these values of r requires a discretization with 
respect to the integration variable r’. The use of the 153 points approximating f is 
natural. However, when r is small the kernel of the integral is rapidly varying and 
we must interpolate f to provide sufficient points to give a smooth representation of 
the integrand. This interpolation and the evaluation off’ and K is achieved by fitting 
quartic segments passing through each point and its four nearest neighbours (the 
first and last two points are treated separately). Further, the velocity produced by 
a ring of unit Stokeslets a t  a large radius r’ does not tend to zero as r/r’  -t 0 and the 
convergence of the integral is due solely to the decay of the strength of the Stokeslet 
distribution on the interface as r’+ CO. We note that f = O ( P )  as r+  co (cf. 
Appendix A) and fit a curve of the form z = to represent f in r > 65.79. The 
integration over this range is performed by transformation to a finite range and use 
of the trapezium rule. I n  the range r < 65.79, the logarithmic singularity of the 
integrand at r = r’ is subtracted and integrated analytically ; the remainder is 
integrated using the trapezium rule. 

It is clear that near an interface in equilibrium the fluid velocity a t  a representative 
point will be nearly tangential to the interface. Since only the normal component of 
velocity produces interfacial motion then any multiple of the tangential component 
can be subtracted and the remainder used in an Euler stepping scheme to calculate 

+ 
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FIQURE 2.  Comparison of the numerical solution f" of (2.13) at & = -0.01 with the asymptotic 
solution f- Qfl+Qzfz+O(Q3). (a) f"/& (solid), fl (dashed). The difference between the curves is 
almost entirely due to the O(&') term - graphs off"/& and fl + &f, are indistinguishable. ( b )  (f" 
-&fi)/Qa (solid), f, (dashed). Some 80% of the difference between the curves is due to the O(Q3) 
term ; the remainder is numerical error. 

the interfacial position a t  successive timesteps. This flexibility is used to ensure that 
the representative points maintain their radial position and are not advected 
towards r = 0. For numerical stability, it  is necessary for the timestep to be less than 
any timescale involved with interfacial motion. In practice, this constraint is 
equivalent to the timestep being smaller than the timescale associated with the 
longest lengthscales and the use of too large a timestep leads to a long-wavelength 
instability. 

Though Euler timestepping and the trapezium rule are simple methods of 
integration, a careful check on the accuracy of the method shows that the use of more 
sophisticated integration schemes does not justify the increased computational 
expense. In particular, it is found that runs with small values of Q give excellent 
agreement with an analytic solution in ascending powers of Q for the velocity field 
and interfacial shape that is described in Appendix A. Graphs of the theoretical 
solution to O(Qz) and the numerical solution at Q = -0.01 are shown in figure 2. 
(Since Q is negative these solutions are stable.) Comparison with solutions a t  different 
values of Q allows us to attribute 80% of the small difference between the solutions 
to the O(Q3)-terms in the series expansion ; the remaining 20 YO of the difference is due 
to numerical errors. From this we estimate that the numerical errors in the interfacial 
velocities are less than 0.2 YO and that the final interfacial positions are accurate to 
within 1 YO. 
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It should be noted that this is an initial-value problem and the motion depends on 
the initial configuration of the interface. We would expect that  if the initial 
deformation of the interface was sufficiently far from equilibrium and close to the 
sink then instability would result. The initial configuration used, therefore, was 
either that of no deformation or that of an equilibrium position at a slightly smaller 
value of Q, or at a larger value of I', for which a stable equilibrium had already been 
found to exist. This procedure assumes that if a stable equilibrium configuration of 
the interface exists a t  a given flow rate then i t  is unique and may be obtained by a 
gradual increase in Q from zero. No results were obtained that suggested that this 
assumption is false. 

5. Numerical results 
We have seen that the numerical scheme outlined in the previous section produces 

excellent agreement with the perturbation analysis of Appendix A (see figure 2). I n  
this section we describe results from a numerical investigation of the ideas presented 
in $3. We calculate the decay timescale of disturbances to an interfacial equilibrium 
as a function of their lengthscale, discuss the behaviour of the interface in initial- 
value problems in which Q is suddenly increased from zero, and determine the critical 
flow rate QJT). 

Equation ( 3 . 7 ~ )  describes the decay rate of small self-similar perturbations to a flat 
interface. Now, consider any interfacial equilibrium (found numerically). If Q < Q, 
then the equilibrium is stable and we expect a small perturbation to the position of 
the interface to  decay. In  particular, at t = 0 we add a disturbance of the form 

I wrk AZ = E COS~-  
4 

(rk c 2) 

= o  (rk > 2) .  

A typical lengthscale for the perturbation a t  t = 0 is given by k-' and a characteristic 
decay rate is given by u = B/u,,, where u,,, is the vertical component of velocity a t  
r = 0 and t = 0. If the disturbance equations are linear then the value of u should be 
independent of E .  A value of e = lop3 was found to be sufficient for this to be the 
case. 

In  figure 3 we plot CT against k for three pairs of values of Q and r. The results differ 
in numerical detail from ( 3 . 7 ~ )  partly because the disturbance is not a self-similar 
solution and partly because the undisturbed interfacial position is no longer flat. 
However, the evolution of the perturbation is governed by the processes described by 
the detailed scaling arguments presented a t  the end of $3. We find that the 
qualitative dependence of u on k and r is in agreement with the predictions of these 
arguments: u is proportional to k-l as k+O and proportional to r k  as k+ 00 ; the 
least-stable lengthscale is a t  k z r-i independently of the value of Q and has a decay 
rate that is an increasing function of r and a linearly decreasing function of Q. We 
deduce that a t  small values of r an interfacial equilibrium is least stable to short- 
wavelength disturbances and that, as expected, Q, will be an increasing function of 
r and will tend to zero as r + O .  

Having confirmed our ideas concerning the decay rate of disturbances to an 
interfacial equilibrium, we present results from an investigation of the existence of 
stable equilibria and the determination of the critical flow rate Qc(r). In  this 
investigation the, following procedure was used. Starting from a stable position (e.g. 
Q = 0, f = 0) the value of Q was increased or the value of r was decreased by a small 
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FIGURE 3. The decay rate u of a small perturbation to an interfacial equilibrium function of 
the wavenumber k of the disturbance. As k + 00, u cc Tk; as k + 0, u cc k-l .  Dashed line Q = 0.08, 
r = 0.002 ; solid line Q = 0.09, r = 0.005; dotted and dashed line Q = 0.09, r = 0.010. 

amount. The interfacial motion was integrated numerically until a sustained growth 
or decay of the upward velocity was observed. We assume that if a stable equilibrium 
is possible under the new flow conditions then the interfacial position will adjust from 
its initial value towards this equilibrium, the interfacial velocities ultimately 
decaying exponentially at the rate of the least-stable lengthscale of perturbation. 
Conversely, if no stable equilibrium is possible then the interface will be advected 
towards the sink and the upward interfacial velocity will increase rapidly. 

In order to illustrate this dichotomous behaviour, we describe two examples of the 
evolution of the interfacial shape from an initial planar state. The two cases were 
chosen to straddle the critical flow curve and gave results that are typical of a stable 
and an unstable flow condition. Both cases have Q = 0.08; they differ in the values 
of r, which are and 2 x lW3. The evolution of the interfacial shape and the 
upwards velocity a t  r = 0 are shown in figures 4 and 5 .  

Initially the two solutions are very similar, as would be expected. At the very early 
stages restoring forces are negligible and the entire interface is advected upwards. As 
the buoyancy forces increase, the interface approaches equilibrium on the longest 
(and, by 3.4, most rapidly adjusting) lengthscales ; interfacial motion continues on 
shorter lengthscales in the central region around r = 0. From t x 40 solutions start 
to diverge as deformation shifts to shorter lengthscales and surface-tension forces 
become significant. The shift to shorter lengthscales is caused partly because they 
adjust more slowly (cf. ( 3 . 7 ~ ) )  and partly because disturbances are advected to 
shorter scales (cf. ( 3 . 7 ~ ) ) .  The decreasing width of the growing peak in the interfacial 
deformation may be seen in figure 4 and can be characterized by the radial position 
of the inflexion point which decreases with time, in the case r = 2 x lop3 from 0.3 at 
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t = 30 to  a limit of 0.03 as t + cx). From t = 100 onwards the difference between the 
two solutions is increasingly marked. For r = 2 x surface-tension forces are 
sufficient to limit the growth of the tip of the interfacial peak and interfacial 
velocities decay rapidly for t > 250 as equilibrium is approached. For r = lop3, on 
the other hand, surface tension is weaker and the peak continues to be advected 
towards regions of ever-increasing sink velocities. At large times ( t  > 350) the peak 
is drawn out into a thin tendril extending towards the sink ; the weight of the tendril 
is insufficient to  prevent it from reaching the sink, causing fluid from the lower layer 
to be withdrawn. 

In the above examples the initial conditions were planar and far from equilibrium. 

FIGURE 4. The evolution of the interfacial shape z =f(r ,  t )  from planar initial conditions: 
(a) Q = 0.08, r = 10-3 ; (b)  cj = 0.08, r = 2 x 10-3. 
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FIGURE 5. The variation of interfacial velocity at r = 0 with time: Q = 0.08, r 
and Q = 0.08, r = 2 x (solid). 
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FIGURE 6. Interfacial stability diagram. Points marked + correspond to stable equilibria ; 
points marked @ correspond to instability and withdrawal of the lower layer. 
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As mentioned before, in the determination of Qc(r) less extreme initial conditions 
were used, each simulation starting from a previously determined and nearby 
equilibrium. The results of our simulations are shown in the (Q, ri)-plane in figure 6. 
The dividing line between the stable and unstable regions is Q = Qc(r). As expected, 
Q, increases monotonically with r from a value very close to zero. 

A t  small values of r the calculated critical value of the flow rate may be an 
overestimate of the true value since the numerical scheme cannot represent 
instabilities a t  wavelengths smaller than the grid-point spacing. However, the results 
for r = 0.000 15 were unaltered by the use of a numerical grid with twice the density 
of points as that described in $5. Further refinement of the grid was prohibited by 
the computational expense. Thus it was not possible to demonstrate that  Qc(0) = 0 
though no stable configurations were found with Q > 0 and f = 0 and we did show 
that Q,(O) < 0.015. 

6. The fluid proportions withdrawn at supercritical flow rates 
In  the previous section we determined the critical flow rate Qc(r) above which 

simultaneous withdrawal from both layers must occur. We found that, for small 
values of r a n d  hence small values of Qc, at slightly supercritical flow rates the lower 
fluid is drawn into the sink through a thin tendril whose weight is insufficient to cause 
i t  to fall with a velocity greater than the advective flow towards the sink. In  this 
regime the volume flux from the lower layer will be much less than that from the 
upper. Here we evaluate the ratio # of the flux of lower fluid to the total flux as a 
function of the (supercritical) flow rate Q. In this calculation i t  is possible to make 
the approximation r = 0 since short-lengthscale disturbances are suppressed by the 
negative strain rate normal to the interface. 

In  the immediate neighbourhood of the sink the velocities are large and the 
assumption of Stokes flow breaks down. I n  terms of the dimensional variables, 
inertial forces will be important within a distance Ri = O ( q / v )  of the sink and we 
assume that v is sufficiently large that Ri < h. Sink flow is a solution to the complete 
Navier-Stokes equations and in the absence of buoyancy forces the streamlines will 
be everywhere radial to the sink. In  a region surrounding the sink, the inwards 
velocity will dominate any buoyancy-driven motion and the streamlines will still be 
nearly radial. We assume that this region has radius greater than Ri so that inertial 
forces are only important in the region where the streamlines are radial, Under this 
assumption, the direction from which a given streamline enters the sink is prescribed 
by its behaviour in the region in which Stokes equations are valid. Therefore, we may 
use (2.13) to determine the equilibrium shape of the interface during steady 
simultaneous withdrawal. 

When the interface passes through the location of the sink the numerical scheme 
described in 9 4 requires some modification. Euler timestepping of the interfacial 
position must be abandoned near the sink since the large velocities cause the 
timescale of motion to be much shorter than any feasible timestep. Instead, a t  each 
iteration the velocity produced by the current interfacial shape is calculated. For a 
fixed rE, the portion of the interface lying in r 2 rE is updated, as before, by an Euler 
timestep using the normal component of the sum of the sink and buoyancy-driven 
velocities. An approximate streamline passing through the interface a t  r = rE is 
found by integration inwards to the sink with a fourth-order Runge-Kutta scheme 
using the buoyancy-driven velocity of the old interfacial position and the sink 
velocity at each point on the streamline. (The approximation lies in using the 
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FIGURE 7. Interfacial shapes z = f ( r )  during steady simultaneous withdrawal at supercritical 
flow rates Q.  

buoyancy-driven velocity on the interface and not on the streamline.) The interface 
lying in r < rE is updated to lie on this streamline. 

Though this scheme loses the link between iteration and time-development it 
serves our purpose of finding the equilibrium withdrawal position. First, in the 
equilibrium position the interface coincides with a streamline and successive 
iterations coincide. Secondly, if the interfacial position is higher (lower) than 
equilibrium a t  one iteration then the buoyancy-driven flow will be larger (smaller), 
streamlines will cross the interface downwards (upwards) as r decreases and the 
interfacial position will be corrected downwards (upwards) towards equilibrium' a t  
the next iteration. Provided rE is sufficiently far from the sink to ensure numerical 
stability, the choice of rE should not and did not affect the computed equilibrium 
position. 

From the equilibrium position of the interface it is a simple matter to calculate the 
flux ratio q5 since i t  is equal to the fraction of total solid angle occupied by the lower 
fluid within the region of radial inflow near the sink. Let 

Then 

df 
r+o dr 

t a n 8  = -1im -. 

1-sin8 
q 5 =  2 . 

As a check on the numerical results it is instructive to consider the limit Q % 1. I n  
equilibrium the components of the sink and buoyancy-driven flows normal to the 
interface must balance. As Q increases, the deformation of the interface required to 
produce a buoyancy-driven flow that balances the vertical component of the sink 
flow also increases. Hence 4 is an increasing function of Q .  As Q + co (an equivalent 
dimensional limit is h + 0) the region in which buoyancy is negligible and the flow is 
radial grows and so 8+0 and $++, i.e. fluid is withdrawn equally from the two 
layers. Suppose the horizontal scale of interfacial deformation is L % 1. The typical 
vertical component of velocity due to the deformation has magnitude O ( L )  and must 
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FIGURE 8. The flux ratio q5 of lower fluid to total fluid withdrawn at superqritical flow rates &. 
Points marked f are the yalculated values; the dashed curve q5 = i-0.654Q-r and the solid curve 
q5 = 4-0.654&-3+0.224&-~ are asymptotic solutions as Q -  co. 

balance that due to the sink, which is O(Q/L3) .  Therefore L - Qi. But dfldr - 1/L 
so, from (6.1) and (6.2), 

#=$-o(Q-+) as ~ + c o .  (6.3) 

A full asymptotic expansion as Q -+ co is likely to  be in inverse powers of Qi. 
Some equilibrium interfacial positions are shown in figure 7. As we expect, the 

regions of radial flow and the proportion of lower-layer fluid drawn up by the 
sink both increase with Q .  The flux ratio # is shown in figure 8 over the range 
0.4 d Q d 500. The results a t  large Q are in agreement with (6.3) and are well 
represented by 

# = $-0.654&-f+0.224&-2 (6.4) 

for Q 2 5. For Q < 0.4 the numerical grid was unable to resolve the fine-scale 
structure of the narrow thread of lower fluid drawn into the sink. Future work with 
grid points spaced by interfacial arclength, rather than by radial position, will 
overcome this difficulty. 

7. Discussion 
Analytic arguments and numerical experiments have been used to investigate the 

effects of surface tension on the critical flow rate for selective withdrawal from a 
viscous two-layer system. We find that the system is characterized by the 
dimensionless flow rate Q and the capillary number r. The decay of disturbances to 
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an equilibrium position of the interface a t  a subcritical flow rate is dominated by 
surface tension on small lengthscales and by buoyancy effects on large lengthscales. 
Hence, both the decay rate and the lengthscale of the least-stable disturbance are 
increasing functions of r. The critical flow rate, above which no stable equilibrium 
withdrawal of a single layer is possible, is found to be an increasing function of r and 
tends to zero in the limit of no surface tension. We conclude that interfacial tension, 
however weak, must play a role in stabilizing short-wavelength disturbances if 
selective withdrawal of a single layer is to be possible. 

These conclusions should be compared with the experimental results of Blake & 
Ivey (1986). They allowed a two-layer system to drain through a hole in the base of 
its container a t  constant flow rate, and measured the depth of the lower layer at 
which the effluent had a composition containing a t  least 2.5% of upper layer fluid. 
This was used as a criterion for draw-down. Surface tension was ignored and the data 
scaled to give an estimate for the critical flow rate of Q, = 0.03. If surface tension 
were indeed negligible (r < 8 x lop5) then, at  least according to our results, this is a 
surprisingly large value of Q (or small value of h )  for draw-down to first occur. 
However, experimental conditions in which the interface is falling and the 
sink-interface distance consequently decreasing are only quasi-steady and it is 
necessary to compare the slow growth rate of the short-wavelength instabilities at 
small capillary numbers with the timescale of the decrease in depth. We also note 
that, at the onset of draw-down, withdrawal of the lower fluid occurs in a thin thread 
a t  small fluxes and would be difficult to observe. Indeed, the experimental 
observations are not of Q, but of the value of Q a t  which $ = 0.025. 

Further light may be shed on the mechanism of instability and on the form of 
withdrawal at slightly supercritical flow rates by comparison with investigations into 
the bursting of viscous droplets immersed in another fluid undergoing extension. In 
these studies, reviewed by Rallison (1984), it is found that the equilibrium 
deformation of a drop increases with the rate of extension and that if the rate of 
extension exceeds a critical value then no equilibrium is possible, the drop is greatly 
stretched and breaks up into smaller droplets. Expressed in the non-dimensional 
units used in this paper, no equilibrium exists for a drop of radius a in strain E if 
4aEa/T > 0.65 (Rallison & Acrivos 1978). In the selective withdrawal problem there 
is a stagnation point and extensional flow at the peak (0, f (0)) of any subcritical 
interfacial equilibrium. On sufficiently short lengthscales the velocities produced by 
buoyancy forces are negligible and the tip of the interfacial peak would be expected 
to behave in a manner analogous to a fluid droplet ; the equivalent critical parameter 
would be 2Qa/(T(l -f(O))')), where a scales with the radius of the tip. 

The behaviour of the interface at slightly supercritical flow rates may also be 
likened to that of a fluid droplet. When a relatively inviscid droplet is in strong strain 
it adopts a spindle shape with conical ends (Taylor 1964) from which small droplets 
are emitted by ' tip-streaming '. Here, since the fluids are of equal viscosity, we expect 
that, as was observed numerically, a rounded interfacial tip is greatly extended into 
a filament drawn towards the sink. It is possible either that capillary instabilities 
would cause the filament to break up into droplets or that the extension of the 
filament would suppress the instabilities and allow the filament to be drawn into the 
sink intact (Tomatiko 1936; Mikami, Cox & Mason 1975). It is hoped that this issue 
may be resolved by extension to  smaller values of Q of the calculations of the flux 
ratio $ described in 3 7.  If we regard Q as a function of $ then lim,,,+ Q < Q, would 
tend to indicate that the filament reaches the sink resulting in steady withdrawal, 
whereas lim,,,+Q > Q, would indicate that there is a range of flow rates in which 
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intermittent withdrawal occurs by a succession of filaments being broken into 
droplets. 

In  this paper we have considered the simplest geometry possible in order to isolate 
the effects of interfacial tension on the stability of subcritical interfacial equilibria 
and on the critical flow rate. This approach promotes the understanding of the 
physical processes involved and aids the design and interpretation of more complex 
models. In any experimental or practical application to withdrawal from a container, 
the effect of the rigid container walls and of the finite dimensions of the orifice must 
also be taken into account. Such effects could be investigated numerically using the 
techniques of this paper by modifying the basic sink flow and including the integrals 
involving the stresses on the walls of the container in the boundary-integral 
representation. A wall in the neighbourhood of the sink would be expected to focus 
the withdrawal in the direction normal to the wall (Blake & Chwang 1974) and to 
increase the likelihood of simultaneous withdrawal. Further development should 
include the effects of unequal viscosities, as described in Appendix B, and investigate 
the sensitivity of the flux ratio q4 to the viscosity ratio. It may also be instructive to 
consider the effects of variations of Q on timescales shorter than or comparable with 
the timescale for adjustment to interfacial equilibrium. 

The application of our results to the tapping of layered magma chambers is of 
particular interest. As described above, direct quantitative application of our 
analysis to magma chambers is inappropriate since the effects of the chamber walls 
and of any viscosity stratification will modify the numerical details of the results. 
The qualitative results will, however, be relevant owing to the same underlying 
physical processes. 

Eruption conditions vary enormously and both simultaneous and sequential 
withdrawal of the layers have been observed. If simultaneous tapping of two layers 
occurs then theoretical calculations show that the two-phase flow in the conduit will 
be unstable (Hickox 1971 ; Joseph, Renardy & Renardy 1984). Experimental studies 
confirm this and show that substantial mixing of the magmas will occur (Koyaguchi 
1985; Freundt & Tait 1986) ; this mechanism has been proposed for the formation of 
banded pumice. The composition and texture of the eruption products can thus vary 
greatly according to  whether selective withdrawal does or does not take place. The 
composition of the outflow will, therefore, depend on the flow rate and on the layer 
structure and geometry of the chamber as well as on the composition of the chamber 
contents and the amount of contamination during ascent. Recent finite-element 
simulations of eruption from an idealized magma chamber with arbitrary initial 
density and viscosity stratification show that the effects of these parameters are 
complex (Spera et al. 1986). However, such simulations are computationally very 
expensive a t  resolutions of less than tens of metres and it seems clear that further 
fundamental research is necessary if field geologists are to be able to invert observed 
eruptive compositional profiles to deduce the pre-eruptive stratification in the 
chamber. 

I would like to thank H. E. Huppert and M. G. Worster for their constructive 
comments. Financial support from the Natural Environment Research Council is 
gratefully acknowledged. 
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Appendix A. The equilibrium of a nearly flat interface 
I n  this appendix we derive an expression for the equilibrium interfacial condition 

z = f ( r )  that is valid in the limit of a weak sink (Q < 1). In  such an equilibrium we 
expect the O(Q) advective flow towards the sink to be balanced by the surface- 
tension and buoyancy forces produced by an O(Q) deformation of the interface from 
its flat position. We seek, therefore, a solution of the form 

f w Qfi + QY2 + O(Q3), (A la)  

u N Qul+ Q2u2 + O(Q3)), (A 1b)  

P -  QPi+Q2p2+O(Q3), (A 1 4  

where the leading-order velocity u, includes the sink flow that forces the solution to 
be non-zero. 

The Stokes flow (u, P) must satisfy boundary conditions a t  z = f comprising 
continuity of velocity and of tangential stress, a discontinuity of normal stress equal 
to f - r K  and the kinematic condition that the flow must be tangential to the 
interface. These conditions may be written in ( r ,  2)-coordinates as 

[urlfr+_ = 0, [ucIfr+_ = 0, (A 2a, b)  

where F =j-r ( ( l ~ ( ~ ~ ~ r ) 2 ) ~  + r (1 

and [ 19 denotes the jump from values a t  z = f- to values a t  x = f+. As yet this is still 
a free-boundary-value problem, so we replace values at z = f by their Taylor 
expansion about z = 0. We substitute from (A 1)  and solve a t  successive orders. 

At O(Q) we obtain the following leading-order problem : 

[u,,]? = 0, [u,,]f = 0, (A 3 a ,  b )  

ult: = O  at z = 0, (A 3 4  

where [ 1' denotes the jump from values at z = 0- to values a t  z = 0, and 

F =f  -r -+---. d2f, 1 df 1 

(dr' r d r )  

Thus u1 is the Stokes flow caused by a sink of strength Q at (0 , l )  and a Stokeslet 
distribution Fie, on z = 0;  Fl is prescribed by the condition that there is no flow 
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FIQURE 9. The image system for a sink of strength Q in the vicinity of a boundary that is held at 
z = 0 between two fluids of equal viscosity. (a) The image system for the flow in z < 0. (b) The image 
system for the flow in z > 0. 

across the plane z = 0. Equations (A 3) may be solved for Fl using the following 
adaptation by Lee, Chadwick & Leal (1979) of the solution of Lorentz (1907) for 
motion in the presence of a rigid wall. 

If ( u , p )  is a Stokes flow in an unbounded domain, then the functions 

u- = ; (u-a),  p-  = i ( p - 9 )  (2 < 0) (A 4a) 

u+ = u++(u*+ci*), p+ = p+i(p*+$*) (2  > 0) (A 4b) 

satisfy (2.1), u-n = 0 on z = 0, and the conditions of continuity of the tangential 
components of velocity and stress on z = 0. Here (6 ,$ )  is the associated solution of 

and (u*,p*)  is the reflected solution given by 

ul* = Ui(X,Y,  -z)-2&u,(x,y, - 4 ,  p* = P ( X , Y ,  -4 .  (A 5 b )  

We substitute the sink flow us for u in (A 4) and (A 5 )  to  deduce the flow u1 satisfying 
(A 3u-c) and (A 3 e ) .  It may be shown that u, is equivalent to the following image 
system (figure 9), where e, denotes the unit vector in the z-direction : the flow u,- (in 
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z < 0) is equivalent to a source doublet of strength Qe, and a stresslet of strength 
2Qe, e, at z = 1, r = 0 ; the flow u,, (in z > 0) is equivalent to the sink of strength Q 
a t  z = 1, r = 0, and an image sink of strength Q, source doublet of strength Qe, and 
stresslet of strength - 2Qe, e,, all a t  z = - 1, r = 0. 

From the solution for U, we can deduce that the discontinuity Fl in the normal 
stress a t  the interface is given by 

We conclude that the leading-order interfacial shape is given by z = fi(r), where fi is 
the solution of 

f l+o  as r +  co, f , ( O )  finite.) 

If r 4 1 we can make the further approximation that 

2-r2 
= q 1  + r 2 ) :  + o(r). 

After the discussion of $3,  we should note that if Q > 0 then we need r > 0 for this 
equilibrium to be stable. If, instead of a sink, we consider a source (Q c 0) then the 
system is always stable and we may put r = 0. 

At the next order in the expansion (A 1) the O(Q2)-terms u2, P2 and f, are forced by 
the quadratic terms in ulr P, and f, generated by deformation of the interface from 
its planar position. It is surprising how many of these terms, which appear in the 
Taylor expansion of (A 2), are zero by virtue of (A 3) and the fact that (u,,Pl) is a 
Stokes flow. After these simplifications the resulting problem takes the form 

[u2,]+ = 0, [u,,]' = 0, (A 9% b )  

where 

-+- a;;]; =f,-, yl [ 2--P2 a;, 1; = F27 

i a  
u2, = - -(rulr f,) a t  z = 0, 

r ar 

dY2 1 df2 F = f  -r -+-- . 
(dr2 r d r )  

Thus u, is the flow generated by a Stokeslet distribution fl(dFl/dr)er+F2e, on 
z = 0;  F2 is specified by the requirement that (A 9e) be satisfied. For the purposes 
of finding f2 we may ignore the flow induced by the radial stress distribution since it 
contains no component across the plane z = 0. We are then reduced to the problem 
of finding the stress distribution F2 that will produce the given normal velocity on 
z = 0. 

A general solution for Stokes flow as a function of the velocity on the boundary of 
a half-space is derived by Jansons & Lister (1988). This solution may be used to 
calculate F, and then (A 9 f) may be solved for f2. As in the solution of (A 8) we note 
that if r 4 1 then f2 - F 2 + O ( r ) .  In  that limit also 

+o(r). 1 2r4-9r2+1 
uzz = - 

2x2 (1 +r2)6  
Q FLM 1Q8 
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The interfacial form (A l a )  provides a useful check on the accuracy and validity 
of the numerical scheme described in $4. As we would expect, the O(Q3)-correction is 
greatest near r = 0 where the interfacial shape is most non-planar. 

Appendix B. The case of unequal viscosities 
The results given previously were derived under the simplifying assumption that 

the upper and lower fluid layers had equal viscosity p, Suppose now that the upper 
fluid has viscosity p+ and the lower fluid viscosity ,L-. I n  this appendix we indicate 
the modifications necessary to  include the dependence on the viscosity ratio 

Consider the potential representation of Stokes flow (2.4b). We multiply this 
identity by the viscosity and apply it to ud in the domains z > f and z < f as before. 
We deduce that 

A = (P-/,L+)- 

where l$ must now also include the jump in the stress associated with the sink flow 
(2 .3)  caused by the viscosity difference. Thus 

F = ( (p -  -p+)  g’f- YK) n + a(p+-pU-) (R2n - 3(n.R) R) .  (B 2) 4xR5 

We make the problem dimensionless, using p+ as the viscosity scale and defining 
Q = qp+/(g’p+ h4). The azimuthal integral can again be evaluated using the 
axisymmetry of the problem. In dimensionless form the resultant equation for the 
velocity of points lying in the interface is 

-ul(x)+K(I-l)Jo* l + A  3.. u n r’dr’ = --+- QRi 1 * Xi,qr’dr’, (B 3 )  
4xR3 t3k , k 2 4 R  

where ‘(’ - A )  (R2n-3(n.R) R ) ,  
4nR5 

F =  ( f - f K ) n +  

R = ( r ,  0 , l  - z ) ,  n = (f ’, 0, - 1) and zijk(r’; r )  and Xi , ( / ;  r )  can be expressed in terms 
of complete elliptic integrals. 

The important difference between (B 3 )  and the analogous equation (2.13) is that 
the interfacial velocity is not given explicitly when A + 1 since it appears in the 
integral on the left-hand side of (B 3). The discretized version of this equation would 
take the form of a set of simultaneous linear equations for the velocities of the data 
points. The matrix-inversion problem is reasonably well conditioned, especially when 
h w 1, since 3& is peaked a t  r = r’ and the linear system is thus diagonally 
dominant. However, accurate integration of (B 3 )  will be computationally expensive. 

We can see from (B 3 )  that the problem of withdrawal from two layers of differing 
viscosities is characterized by the dimensionless flow rate Q, the capillary number r 
and the viscosity ratio A. Withdrawal of both layers will occur if Q > Qc(r, A )  where 
Q,( r, 1) is given in figure 6. Experimental work by Blake & Ivey (1986) suggests that 
Q, is only weakly dependent on A and it  would be interesting to solve (B 3 )  to confirm 
this. 

It is important to realize that the underlying physics of the flow does not depend 
on the assumption A = 1 and that the arguments of $ 3  will carry over to the case 
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h + 1. There is a consequent prediction of instability a t  short lengthscales when 
r 4 1, though the numerical details will depend on h. The case h < 1 is of interest for 
those magmatic bodies in which a viscous granitic melt overlies a less viscous basaltic 
melt. 

Appendix C. The azimuthal integral 
Let z = f ( r )  and z’ = f ( r ’ ) .  Then, in cylindrical polar coordinates ( r ,  8, z ) ,  we find 

that n d A  = ( f ’ ,O,  - 1) d0r‘dr‘. Using identities derived from those given by Lee & 
Leal (1982), it may be shown that the integration over 0 in (2 .5)  leads to (2.10) in 
which 

( r  - r’ff ’  - ( z  -2 ’ )  rf ’(E - K )  
g7(Xzrf‘-x*z) = ( 2 - 2 ’ )  ( A 2 - B 2  E +  B2 

) E + f ’(K- 3E) 
( r  - r ’) f ’  - (z- z’) ( A2-B2  

&’(Xrrf’-Xrc) = ( r - r ’ )  

(K-E), (C 161 
(2(2- z ’ ) ~  + ( r  - r’ )2)f ’  - r ’ (z-z ’ )  

B2 
+ 

where A 2  = ( z - . ~ ’ ) ~  + r2 + r’2, B2 = 2rr‘, C2 = A 2  + B2 and K(m) and E(m) are complete 
elliptic functions of the first and second kinds with arguments m = 2B2/C2.  

The form of these equations shows that the singularity as r’ -+ r is no worse than 
the logarithmic singularity of the complete elliptic functions as their argument tends 
to 1.  Indeed 

Xzrf’-Xzz - -- 
2 K  r I 

1 as r ’ -+r> 

and the singularity can thus be subtracted and integrated analytically. 
Except when m < 1 ,  the values of the elliptic functions in (C 1) are calculated using 

polynomial approximations accurate to within 2 x (Abramowitz & Stegun 1965, 
equations 17.3.34 and 17.3.36). When m -4 1, the Taylor series for E and K 
(Abramowitz & Stegun 1965, equations 17.3.11 and 17.3.12) are used to avoid the 
large numerical round-off errors involved in evaluating E - K directly. 
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